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5.1 REPONSE FREQUENTIELLE

= Réponse frequentielle d’'un systeme
= Réponse a une excitation sinusoidale
= Réponse a une excitation périodique
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Réponse fréquentielle d’un systeme LIT

m Systeme linéaire invariant dans le temps = filtrage temporel

y(t) = /_ - hr)at—7)dr — X(w)H(w) x(t) y(t) = (hxx) (1)

m Réponse impulsionnelle h(t)
= h(t) = Sa{0}(t)

+oo
= Condition de stabilité BIBO: / |h(t)| dt < 400 < hel
m Réponse fréquentielle
+o0 )
H(w) = / h(t)e 7t dt = F{h}(t) (bien définie, car h € L1)

Deux représentations :
= Parties réelle et imaginaire: H(w) = Ry (w) + jlg(w)
= Réponse d'amplitude et de phase: H(w) = Ay (w) - e?®H#«)
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Réponse a une excitation sinusoidale

m Réponse a une excitation sinusoidale complexe

Réponse fréquentielle

zo(t) = elwot / ‘
ot eijt H(CL)O) . eijt
yelt) = (h s 2.)(t) = H(w) - 0t = H(wg) - () ) e
Calcul temporel (rappel)
+o0 +oo

Ye(t) = (h*xz)(t) = / h(r) - &0t dr = / h(r)e 9“7 dr ef“o! = H (wyp) - el*0
Calcul par transformation de Fourier

edwot s 2718 (w — wp)

ye(t) «  Xe(w)  Hw) =2m0(w —wp) - Hw) = H(wp) - 275 (w — wp)

m Réponse a une excitation sinusoidale réelle
. . Réponse d’amplitude Réponse de phase

z(t) = Acos(wot + 0) = Re (Aelfeiwn?) /

y(t) = Re(Ae’?yc(t)) = Re(Ae?? H(wp)elo") = A - Ap(wp) - cos (wot + 0 + g (wo))

Conclusion: La réponse a une excitation sinusoidale est une sinusoide de méme fréquence
avec un facteur d’atténuation et un déphasage spécifiés par la réponse fréquentielle (amplitude
et phase) du systéme LIT.
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Exemple: filtre RC

B )
o
wit)==0) | CII“Q“):M Ly(e) + soutt) = soa). s0= s

Equation différentielle:

Recherche explicite de la réponse a une excitation sinusoidale
(méthode des phaseurs):

S0 z(t) = eiwot
1 s jwot ! : iwot
Jw + S y(t) = H(wo)e?*" = y/(t) + soy(t) = (jwo + s0)H (wo)e’™°
(jwo + s0)H (wo)e?*" = spe’** = H(wp) = jwosi S0
50
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Réponse a une excitation périodique

m Signal d’excitation périodique

LTy (t) Y1o (t)
xT, (t) =T, (t + I{IT(]), Vk € Z

A 1 2 , 27
Série de Fourier: zr, (t) = E Cpe?™ot e, =7 | 33To (t)e "ot dt,  wy = o
0 0

neZ

m Réponse du systéeme a une excitation périodique

yr, (1) = (h* 1) Z Cn - H(nwy) - e/t (par linéarité)
nes

Périodicité de la réponse (argument temporel):
y(t + kTo) = (h*aq, (- + kTp)) (t) = (h = 2q,) () = y(t)

Calcul par transformation de Fourier

E cpedeot 27r§ cnd(w — nwp)

nez nez

yr,(t) < Xp(w) - Hw)=H(w)- (271' Z end(w — nw0)> =27 Z H(nwo) - ¢n0(w — nwy)

nez nez

Conclusion: La réponse d’'un systéme LIT a une excitation périodique est forcément périodique

Unser / Signaux et systemes 5-7

5.2 FILTRES IDEAUX

= Filtre passe-bas idéal

= Canal de Nyquist idéal

= Canal de Nyquist non-idéal
= Filtre passe-bande idéal
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Filtre passe-

bas idéal

t Ap(w)
—Wwy, Wi, "
<I>H(w):O
w
I
f‘fl
R0
Es
t
o
wr,

N.B. Le filtre passe-bas idéal n'est pas causal-donc pas réalisable!
Toutefois, c’est un outil tres utile pour comprendre et analyser les systémes.
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Canal de Nyquist ideal

Un filtre passe-bas idéal présente les caractéristiques idéales d’'un canal de transmission
pour des impulsions de Dirac pondérées, si elles sont introduites dans le canal avec une
distance T, =m/wy (=1° zéro du sinc) (Canal de Nyquist idéal)

) w
Capacité du canal: =

z(t) = Z ap - 0(t —nT)

nez

ao

1 | Digits
sec

T /wi H(w)
— | | w —

—Wwr| WL

a1
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Canal de Nyquist non-idéal

] Message
m Signal transmis {00t st} Trae(®) = 3 and(t — nT2)
2(t) =) aphi(t —nT) , }
neZ ha(t) Modulation

impulsionnelle
m Signal recu l x(t)
y(t) = Z anh(t — nTy) At) = (ha x oz * ha) (1) <h2(t) Hj(w) de tr;zﬁilssion

}

m Critére de transmission parfaite U13() conaour
= y(t
y(nT,) = a, < h(nTe):{ (1) 2#8 ) v
m Condition de Nyquist généralisée (interpolation) R Pointde symétrie
} H(“'y
s r, L 2r /N
h(nT.) = on eZH(w—i—Ten)—l Y W
nez e ; Wl
(cf. exercise)
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Filtre passe-bande idéal
m Réponse fréquentielle:
B w + wo w — wo
H(w) —rect< 5 > —|—rect( B >
wp: fréquence centrale
B: bande passante
h(t
B g _1 Mo
> H(w) . p 1 p \r .
I | | I | | W _ T AR A .lﬂ A\h‘
_ 0‘50 I Q}G — ﬁuyw‘*@%'w w
I " 2
B
B
g <I_——_|> rect (—) o
B . t
_ —sinc
< * F 2 27 /B
§(w + wo) S(w—wo) - X
T ] T it 2 cos(wot)
S —wo wo )
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5.3 ECHANTILLONNAGE DE SIGNAUX

= Signal échantillonné analogique

= Echantillonnage et répétition spectrale
= Dualité avec les séries de Fourier

= Formule de Poisson

= Théoréme d’échantillonnage (Shannon)
= Reconstruction d’un signal analogique

= Généralisation du théoreme d’échantillonnage
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Signal analogique échantillonné

m Echantillonnage idéal } :/U(t) _
Multiplication avec un peigne de Dirac — T f t
ze(t) = a(t) x Y _o(t—nT.) =Y x(nl.)i(t —nT,) I _____ l o Te 2T

nez nez

~—’

m Calcul de la transformation de Fourier

+o0 ) +o0 )
X, (w) = /_ > a(nT.)é(t —nT.)e 7 dt = > ax(nT.) /_ 5(t — nT,)e <t dt

nez nez

= Z x(nT,)e 7w Te

nez

m Caractéristiques de X, (w)

Fonction périodique (somme d’harmoniques)

2
Période: w, = Tﬂ (t.q., we T, = 2m)

Forme: dépend des échantillons z:(nT,) de x(t)
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Echantillonnage et répétition spectrale

m Signal échantillonné

:m(t)xz5(t—kTe) —  Xe(w)

keZ

v

T. 2T
27
sous-échantillonnage Ye T T,
LeT x(t)
NV
[T
! Té R g
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Formule de Poisson

m Peigne de Dirac

STot+k) T 2wy b(w+ n2n)

kEZ nez

v

m Formule de Poisson Justification:

S 1) =3 Fem)

keZ nez

Valide également pour f, F' € L,

= > f(k

VIES (Y 6(-+k)
:ZF27m

kEZ

kEZ nez

m Formule de Poisson et échantillonnage

Ft) =z)e 0t Ly F(w) = X(w + wo)

Zf(k):z )eIwok — ZF (2mn)

keZ keZ nes

newz

= X(w) =) a(k)e ™ =) X(w+2mn)

keZ neZ
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F 2 Z d(-+n2m)) (Parseval)

nez

(modulation)

Z X (2mn + wo)



Dualité avec les séries de Fourier

m Périodisation dans le temps wo = QT—Z
X, (w) =wp Yy X(nwy)d(w — nwp)
rr,(t) =Y a(t — kTp) ge:z
A keZ \\\
AN F NN R
t — S
— ’ T I i
Ty T >
wq 2w0 N
m Echantillonnage dans le temps
ze(t) = Y a(kTp)d(t — kTp) X.(w) = ;”_; 3" X(w — nuwo)
keZ newL

e ald)
[ 1%

Ty 2T, Tt C‘SO

y
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Théoreme d’échantillonnage

Théoréeme [Shannon, 1949]
Une fonction z(¢) (& bande limitée) qui ne contient pas de fréquences supérieures

A Wmax = 27 fmax €St complétement déterminée par ses échantillons {ge(k;Te)}kEZ
pour autant que:

N.B. En pratique, le signal =(t) doit étre filtré avant I'’échantillonnage avec un filtre
passe-bas analogique (filtre de garde ou «anti-aliasing») de fagon que sa largeur de
bande soit bien limitée.

Demo l Video |
Unser / Signaux et systémes 5-18




Reconstruction du signal analogique

m Reconstruction par filtrage passe-bas idéal

. x(t)

SN I S X(w)
T N

4 X (w
l 2w, T 6( )
A A
T Fréquence de coupure w.: HE
l | e il w
Wmax < We < We — Wmax N/l /ll\l/\ .
We | | 1 i’
l wmax We

Jad
&
Il
s
£
o3
=
&
S
Y
o
O
~
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Formule de reconstruction de Shannon

m Reconstruction par filirage idéal

ze(t) =Y x(kT.)s(t — kT)

kEZ A Te

—{ 11, —

5(t) “we sinc (Ti) = F {Terect (W) } (1)

m Formule de reconstruction (signal a bande limitée)

(t) = (m . (T>> (1) = 3 a(kT)sinc (t _TkT8> e < e 2

€ kezZ e

Propriété d’interpolation:
CUrec(t) P P
\ sinc(k) =0, < xrec(t)lt:kT) = z(kT,)
*;ﬂ? ,

{ l S
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Convertisseur N/A réel

m Systéme de reconstruction pratique

TSH t)
{2 (kT) }es I,—'_'_‘ hs(t) T /—:
—1 N/A .
— g
—
m Modeéle équivalent W) = <rect ( —TT/2> . hg) 0
re(t) = w(kT)5(t — kT) Trec(t) =Y a(ET)h(t — kT)
kez — h(t) — ke%
m Criteres de design pour le filtre de lissage
. . . . 7 1 s s
= Bonne approximation du filtre idéal:  |Hg(w)| = sinc @T/(20) pourw € [—7%, %]

2
= Interpolation: xrec(kT) = a;'(k‘T) 54 h(k‘T) =0, & = Z H (w + 7Tn> =1
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Généralisation du théoreme de Shannon

m Exemple: signal dont le spectre est contenu dans des bandes

NAA ANAA A

—We
La reconstruction est possible seulement s'il N’y a pas de recouvrement spectral!

m Reconstruction (filtres idéaux de reconstruction H; et H5)

1 H(w) . Hy(w)
NAal AN
w1 w9

2(t) = w(kT)hi(t — kTo) + > a(kT.)ho(t — kT,)
keZ keZ
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