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5.1 REPONSE FREQUENTIELLE

■ Réponse fréquentielle d’un système
■ Réponse à une excitation sinusoïdale
■ Réponse à une excitation périodique
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x(t)

h(t)

y(t) = (h � x) (t)

Réponse fréquentielle d’un système LIT

Sa
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Système linéaire invariant dans le temps = filtrage temporel

y(t) =
� +⇥

�⇥
h(�)x(t� �) d� ⇥⇤ X(⇥)H(⇥)

Réponse impulsionnelle

h(t) = Sa{�}(t)

Condition de stabilité BIBO:
� +⇥

�⇥
|h(t)| dt < +⇥ � h ⇤ L1

Réponse fréquentielle

H(�) =
� +⇥

�⇥
h(t)e�j�t dt = F{h}(t) (bien définie, car h ⇥ L1)

Deux représentations :

Parties réelle et imaginaire: H(�) = RH(�) + jIH(�)

Réponse d’amplitude et de phase: H(�) = AH(�) · ej�H(�)
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Réponse à une excitation sinusoïdale

Réponse d’amplitude Réponse de phase

Réponse fréquentielle

ej�0t H(�0) · ej�0t

h(t)
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Réponse à une excitation sinusoïdale complexe

xc(t) = ej�0t

yc(t) = (h ⇥ xc)(t) = H(�0) · ej�0t = H(�0) · xc(t)

Réponse à une excitation sinusoïdale réelle

x(t) = A cos(⇥0t + �) = Re
�
Aej�ej⇥0t

⇥

y(t) = Re
�
Aej�yc(t)

⇥
= Re

�
Aej�H(⇥0)ej⇥0t

⇥
= A · AH(⇥0) · cos (⇥0t + � + �H(⇥0))

Conclusion: La réponse à une excitation sinusoïdale est une sinusoïde de même fréquence
avec un facteur d’atténuation et un déphasage spécifiés par la réponse fréquentielle (amplitude
et phase) du système LIT.

Calcul par transformation de Fourier

ej�0t ⇤ 2⇥�(⇤ � ⇤0)

yc(t) ⇤ Xc(⇤) · H(⇤) = 2⇥�(⇤ � ⇤0) · H(⇤) = H(⇤0) · 2⇥�(⇤ � ⇤0)

Calcul temporel (rappel)

yc(t) = (h ⇥ xc)(t) =
� +⇥

�⇥
h(�) · ej⇥0(t��) d� =

� +⇥

�⇥
h(�)e�j⇥0� d� ej⇥0t = H(⇥0) · ej⇥0t
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u2(t) = y(t)
Equation différentielle:
d
dt

y(t) + s0y(t) = s0x(t), s0 =
1

RC

Exemple: filtre RC

u1(t) = x(t)

i(t)R

C

�H(�) = � arctan(�/s0)

�

AH(�) =
s0�

�2 + s2
0

H(�) =
s0

j� + s0

�
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Recherche explicite de la réponse à une excitation sinusoïdale
(méthode des phaseurs):

x(t) = ej�0t

y(t) = H(�0)ej�0t � y�(t) + s0y(t) = (j�0 + s0)H(�0)ej�0t

(j�0 + s0)H(�0)ej�0t = s0e
j�0t � H(�0) =

s0

j�0 + s0
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xT0(t) yT0(t)
Signal d’excitation périodique

xT0(t) = xT0(t + kT0), ⌅k ⇤ Z

Série de Fourier: xT0(t) =
�

n⇥Z
cnejn�0t, cn =

1
T0

⇥ T0
2

�T0
2

xT0(t)e
�jn�0t dt, ⇥0 =

2�

T0

Réponse du système à une excitation périodique

yT0(t) = (h ⇥ xT0) (t) =
�

n⇥Z
cn · H(n⇥0) · ejn�0t (par linéarité)

Réponse à une excitation périodique

h(t)
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Conclusion: La réponse d’un système LIT à une excitation périodique est forcément périodique

Périodicité de la réponse (argument temporel):

y(t + kT0) = (h ⇥ xT0(· + kT0)) (t) = (h ⇥ xT0) (t) = y(t)

Calcul par transformation de Fourier
⇤

n�Z
cnejn�0t ⇤ 2⇥

⇤

n�Z
cn�(⇤ � n⇤0)

yT0(t) ⇤ XT0(⇤) · H(⇤) = H(⇤) ·
�

2⇥
⇤

n�Z
cn�(⇤ � n⇤0)

⇥
= 2⇥

⇤

n�Z
H(n⇤0) · cn�(⇤ � n⇤0)
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5.2 FILTRES IDEAUX

■ Filtre passe-bas idéal
■ Canal de Nyquist idéal
■ Canal de Nyquist non-idéal
■ Filtre passe-bande idéal
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AH(⇥) =

⇤
1, |⇥| < ⇥L

0, |⇥| > ⇥L

�H(⇥) = 0, ⇤⇥

h(t) =
⇥L

�
sinc

�
t

�/⇥L

⇥
F�⇥ H(⇥) = rect

�
⇥

2⇥L

⇥F�1

N.B. Le filtre passe-bas idéal n’est pas causal–donc pas réalisable!
Toutefois, c’est un outil très utile pour comprendre et analyser les systèmes.

Filtre passe-bas idéal

�

⇥L

⇥L

�

��L

AH(�)

�L

�

�H(�) = 0
�

h(t)

t
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x(t) =
�

n�Z
an · �(t� nTe)

sinc
�

nTe

Te

⇥
= �n � y(nTe) = an

Canal de Nyquist idéal
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Canal de transmission

��L

�/⇥L

�
H(�)

�L

tt

a0
a2

a3

a1

a�1

y(t) =
⇤

n�Z
an · sinc

�
t� nTe

Te

⇥

Un filtre passe-bas idéal présente les caractéristiques idéales d’un canal de transmission
pour des impulsions de Dirac pondérées, si elles sont introduites dans le canal avec une
distance Te = �/⇥L (=1er zéro du sinc) (Canal de Nyquist idéal)

Capacité du canal:
⇥L

�
= 2fL =

1
Te

�
Digits
sec

⇥
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h1(t)

x(t)

h3(t)

y(t)

�L

Canal de Nyquist non-idéal

Canal
de transmission

Message

Filtre
correcteur

Point de symétrie

(cf. exercise)
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Signal transmis

x(t) =
⌅

n�Z
anh1(t� nTe)

Signal reçu

y(t) =
⌅

n

anh(t� nTe)

Critère de transmission parfaite

y(nTe) = an ⌅ h(nTe) =

⇤
1, n = 0
0, n ⇧= 0

Condition de Nyquist généralisée (interpolation)

h(nTe) = �n
F⇥⇤ 1

Te

⌅

n�Z
H

�
⇤ +

2⇥

Te
n

⇥
= 1

h2(t) H2(�)

RH(�)

�
��L

{. . . , a0, a1, . . . , an, . . . } xideal(t) =
�

n

an�(t� nTe)

Modulation 
impulsionnelle

h(t) = (h1 � h2 � h3)(t)
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Réponse fréquentielle:

H(�) = rect
�

� + �0

B

⇥
+ rect

�
� � �0

B

⇥

�0: fréquence centrale

B: bande passante

�

F�1

rect
� �

B

⇥

�(⇥ � ⇥0)

Filtre passe-bande idéal

 

=
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F�1

B

B

�

2�

B

��0

H(�)

�0

�

�

�(⇥ + ⇥0)

�

��0 �0

t

h(t)

⇤
  ⌥

  ⇧

B

2�
sinc

�
t

2�/B

⇥

�
2 cos(⇥0t)

⌅
  �

  ⌃

B
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5.3 ECHANTILLONNAGE DE SIGNAUX

■ Signal échantillonné analogique
■ Echantillonnage et répétition spectrale
■ Dualité avec les séries de Fourier
■ Formule de Poisson
■ Théorème d’échantillonnage (Shannon)
■ Reconstruction d’un signal analogique
■ Généralisation du théorème d’échantillonnage
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Signal analogique échantillonné

14

2TeTe

xe(t)
x(t)

t

Xe(�)

��e �e

�

�e

Caractéristiques de Xe(�)

Fonction périodique (somme d’harmoniques)

Période: ⇥e =
2�

Te
(t.q., ⇥eTe = 2�)

Forme: dépend des échantillons x(nTe) de x(t)

Echantillonnage idéal

Multiplication avec un peigne de Dirac

xe(t) = x(t)⇥
�

n�Z
�(t� nTe) =

�

n�Z
x(nTe)�(t� nTe)

Calcul de la transformation de Fourier

Xe(⇥) =
⇥ +⇥

�⇥

�

n⇤Z
x(nTe)�(t� nTe)e�j�t dt =

�

n⇤Z
x(nTe)

⇥ +⇥

�⇥
�(t� nTe)e�j�t dt

=
�

n⇤Z
x(nTe)e�j�nTe
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X(�)

�L

�

Echantillonnage et répétition spectrale
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⇥e =
2�

Te

Xe(�)

�e > 2�L

�
�L

��
e < 2�L

�

X �
e(�)

Signal échantillonné

xe(t) = x(t)⇤
⇧

k�Z
�(t�kTe)

F⇧⌃ Xe(⇤) =
1
2⇥

⇤
X ⌅ 2⇥

Te

⇧

n�Z
�

�
·� n

2⇥

Te

⇥⌅
(⇤)

Xe(⇥) =
1
Te

⇤

n�Z
X

�
⇥ � n

2�

Te

⇥

t

x(t)

Te 2Te
. . .

T �
e

“sous-échantillonnage”

t

x(t)

. . .
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Formule de Poisson
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Peigne de Dirac
�

k�Z
�(t + k) F�⇥ 2⇥

�

n�Z
�(⇤ + n2⇥)

Formule de Poisson
�

k�Z
f(k) =

�

n�Z
F (2�n)

Valide également pour f, F � L1

Justification:

⌅f ⇤ S, ⌃f,
X

k�Z
�(· + k)⌥ =

1
2⇥

⌃F, 2⇥
X

n�Z
�(· + n2⇥)⌥ (Parseval)

⇥
X

k�Z
f(k) =

X

n�Z
F (2⇥n)

Formule de Poisson et échantillonnage

f(t) = x(t)e�j�0t F�⇥ F (⇥) = X(⇥ + ⇥0) (modulation)

�

k⇥Z
f(k) =

�

k⇥Z
x(k)e�j�0k =

�

n⇥Z
F (2�n) =

�

n⇥Z
X(2�n + ⇥0)

⇤ Xe(⇥) =
�

k⇥Z
x(k)e�jk� =

�

n⇥Z
X(⇥ + 2�n)
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Périodisation dans le temps ⇥0 =
2�

T0

xT0(t) =
�

k�Z
x(t� kT0)

XT0(⇥) = ⇥0

�

n�Z
X(n⇥0)�(⇥ � n⇥0)

F�⇥
�

�0X(�)

2�0

Dualité avec les séries de Fourier
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�0

T0

t

. . .

Xe(⇥) =
⇥0

2�

�

n�Z
X(⇥ � n⇥0)

�0

�

Echantillonnage dans le temps
xe(t) =

�

k�Z
x(kT0)�(t� kT0)

F�⇥
T0 2T0

x(t)

t

. . .
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X(�)

��max �max

Xe(�)

�e

�

N.B. En pratique, le signal x(t) doit être filtré avant l’échantillonnage avec un filtre
passe-bas analogique (filtre de garde ou «anti-aliasing») de façon que sa largeur de
bande soit bien limitée.

Théorème d’échantillonnage

VideoDemo
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�

�e

Théorème [Shannon, 1949]
Une fonction x(t) (à bande limitée) qui ne contient pas de fréquences supérieures
à ⇥max = 2�fmax est complètement déterminée par ses échantillons {x(kTe)}k�Z
pour autant que:

Te =
2�

⇥e
� 1

2fmax

ou ⇥e ⇥ 2⇥max
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Fréquence de coupure �c:
�max < �c < �e � �max

X(�)

��max �max

Xe(�)

�max

�

Reconstruction du signal analogique
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Reconstruction par filtrage passe-bas idéal

xe(t)

�c

Te

�e

�

2�c

x(t)
X(�) = Xe(�) · Terect

�
�

2�c

⇥

�

t

t
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Reconstruction par filtrage idéal

xe(t) =
�

k�Z
x(kTe)�(t� kT )

�(t)

x(t) =?

Formule de reconstruction de Shannon
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sinc
�

t

Te

⇥
= F�1

⇤
Terect

�
·

2�/Te

⇥⌅
(t)�e

Te

Formule de reconstruction (signal à bande limitée)

Propriété d’interpolation:

sinc(k) = �k � xrec(t)
��
t=kTe

= x(kTe)
xrec(t)

t

x(t) =
�

xe ⇤ sinc
�

·
Te

⇥⇥
(t) =

⇤

k�Z
x(kTe)sinc

�
t� kTe

Te

⇥
�max < �e/2
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Système de reconstruction pratique

{x(kT )}k�Z

xSH(t)
hs(t)

Convertisseur N/A réel

Filtre de 
lissageN/A
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xrec(t) = (hs � xSH) (t)

h(t) =
�

rect
�

·� T/2
T

⇥
⇤ hs

⇥
(t)Modèle équivalent

xe(t) =
�

k�Z
x(kT )�(t� kT ) xrec(t) =

�

k�Z
x(kT )h(t� kT )

h(t)

Critères de design pour le filtre de lissage

Bonne approximation du filtre idéal: |Hs(⇤)| ⇥ 1
sinc (⇤T/(2⇥))

pour ⇤ ⌅ [� �
T , �

T ]

Interpolation: xrec(kT ) = x(kT ) ⇤ h(kT ) = �k ⇤ 1
T

⇤

n�Z
H

�
⇤ +

2⇥n

T

⇥
= 1
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Exemple: signal dont le spectre est contenu dans des bandes

X(�)

�1 �2

�

��e �e

Généralisation du théorème de Shannon
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�

Reconstruction (filtres idéaux de reconstruction H1 et H2)
H1(�) H2(�)

x(t) =
�

k�Z
x(kTe)h1(t� kTe) +

�

k�Z
x(kTe)h2(t� kTe)

�

�1 �2

La reconstruction est possible seulement s’il n’y a pas de recouvrement spectral!


